设三角形abc的内角abc的对边abc,已知sin 二B =sin A,求证b 分之a 等于二co
设三角形abc的内角abc的对边abc,已知sin二B=sinA,求证b分之a等于二cosB...
设三角形abc的内角abc的对边abc,已知sin 二B =sin A,求证b 分之a 等于二cosB
展开
展开全部
已知a b c 分别是三角形ABC三个内角A.B.C的对边,2b-c/a=cosC/cosA,求角A大小求函数y=根号3sinB+sin(C-派/6)的值域
(1)解析:∵a,b,c 分别是三角形ABC三个内角A,B,C的对边,2b-c/a=cosC/cosA
(2b-c)cosA=acosC==>acosC+ccosA=2bcosA
由正弦定理得sinAcosC+sinCcosA=2sinBcosA
∴sin(A+C)=sinB=2sinBcosA
∵sinB>0
∴cosA=1/2==>A=π/3
(2)解析:∵y=√3sinB+sin(C-π/6),B+C=2π/3==>C=2π/3-B
∴y=√3sinB+sin(C-π/6)=√3sinB+sin(π/2-B)=√3sinB+cosB=2sin(B+π/6)
∵0<B<2π/3==>π/6<B+π/6<5π/6
∴y=√3sinB+sin(C-π/6)的值域为(1,2]
(1)解析:∵a,b,c 分别是三角形ABC三个内角A,B,C的对边,2b-c/a=cosC/cosA
(2b-c)cosA=acosC==>acosC+ccosA=2bcosA
由正弦定理得sinAcosC+sinCcosA=2sinBcosA
∴sin(A+C)=sinB=2sinBcosA
∵sinB>0
∴cosA=1/2==>A=π/3
(2)解析:∵y=√3sinB+sin(C-π/6),B+C=2π/3==>C=2π/3-B
∴y=√3sinB+sin(C-π/6)=√3sinB+sin(π/2-B)=√3sinB+cosB=2sin(B+π/6)
∵0<B<2π/3==>π/6<B+π/6<5π/6
∴y=√3sinB+sin(C-π/6)的值域为(1,2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询