用拉普拉斯变换解常系数线性微分方程的初值问题,有哪
3个回答
展开全部
解:
运用拉氏变换解常系数线性微分方程的初值问题,我认为具有如下优点:
(1)求解过程规范化,便于在工程技术中应用.
(2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.
(3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.
(4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
(5)因为对有些函数可以直接查拉氏变换表得出其像函数或像原函数,所以更显出用拉氏变换法求解的优点.
运用拉氏变换解常系数线性微分方程的初值问题,我认为具有如下优点:
(1)求解过程规范化,便于在工程技术中应用.
(2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.
(3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.
(4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
(5)因为对有些函数可以直接查拉氏变换表得出其像函数或像原函数,所以更显出用拉氏变换法求解的优点.
展开全部
解:运用拉氏变换解常系数线性微分方程的初值问题,我认为具有如下优点:
(1)求解过程规范化,便于在工程技术中应用.
(2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.
(3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.
(4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
(1)求解过程规范化,便于在工程技术中应用.
(2)因为取拉氐变换时连带初始条件,所以它比经典法(指高等数学中常微分方程的解法)使捷.
(3)当初始条件全部为零时(这在工程中是常见的),用拉氏变换求解特别简便.
(4)当方程中非齐次项(工程中称输入函数)因具跳跃点而不可微时(工程中也常见),用经典法求解是很困难的,而用拉氏变换求解却不会因此带来任何困难.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
拉普拉斯变换法:求解常系数线性常微分方程的一个重要方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询