求下列积分,求解答过程
2个回答
展开全部
1、原式=x{ln[x+√(1+x^2)]}^2|(0,1)-∫(0,1)2xln[x+√(1+x^2)]/√(1+x^2)dx
=ln(1+√2)-2∫(0,1)ln[x+√(1+x^2)]d[√(1+x^2)]
=ln(1+√2)-2√(1+x^2)ln[x+√(1+x^2)]|(0,1)+2∫(0,1)dx
=ln(1+√2)-2√2*ln(1+√2)+2
=(1-2√2)*ln(1+√2)+2
2、原式=∫(1,+∞) (1/x^2+1)/(1/x^2+x^2)dx
=∫(1,+∞) d(x-1/x)/[(x-1/x)^2+2]
=(1/√2)*arctan[(x-1/x)/√2]|(1,+∞)
=(1/√2)*(π/2)
=(√2)π/4
=ln(1+√2)-2∫(0,1)ln[x+√(1+x^2)]d[√(1+x^2)]
=ln(1+√2)-2√(1+x^2)ln[x+√(1+x^2)]|(0,1)+2∫(0,1)dx
=ln(1+√2)-2√2*ln(1+√2)+2
=(1-2√2)*ln(1+√2)+2
2、原式=∫(1,+∞) (1/x^2+1)/(1/x^2+x^2)dx
=∫(1,+∞) d(x-1/x)/[(x-1/x)^2+2]
=(1/√2)*arctan[(x-1/x)/√2]|(1,+∞)
=(1/√2)*(π/2)
=(√2)π/4
更多追问追答
追问
第一题ln(1➕根号2)少了个平方吧
追答
是的,我笔误了,你看得很仔细
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
∫(0->1) ln[x+√(1+x^2)] dx
=[x.ln[x+√(1+x^2)] ]|(0->1) - ∫(0->1) {x/[x+√(1+x^2)] } . ( 1+ x/√(1+x^2)) dx
=ln2 -∫(0->1) x/√(1+x^2) dx
=ln2 - [√(1+x^2)]|(0->1)
=ln2 -(√2 -1)
=1+ln2 -√2
(2)
let
x- 1/x = √2 tanu
(1+ 1/x^2) dx =√2 (secu)^2 du
x=1, u=0
x=+∞, u=π/2
∫(1->+∞) (1+x^2)/(1+x^4) dx
=∫(1->+∞) (1+1/x^2)/(x^2 + 1/x^2) dx
=∫(1->+∞) (1+1/x^2)/[ (x - 1/x)^2 + 2] dx
=∫(0->π/2) √2 (secu)^2 du /[2(secu)^2 ]
=(√2/2) ∫(0->π/2) du
=(√2/4)π
∫(0->1) ln[x+√(1+x^2)] dx
=[x.ln[x+√(1+x^2)] ]|(0->1) - ∫(0->1) {x/[x+√(1+x^2)] } . ( 1+ x/√(1+x^2)) dx
=ln2 -∫(0->1) x/√(1+x^2) dx
=ln2 - [√(1+x^2)]|(0->1)
=ln2 -(√2 -1)
=1+ln2 -√2
(2)
let
x- 1/x = √2 tanu
(1+ 1/x^2) dx =√2 (secu)^2 du
x=1, u=0
x=+∞, u=π/2
∫(1->+∞) (1+x^2)/(1+x^4) dx
=∫(1->+∞) (1+1/x^2)/(x^2 + 1/x^2) dx
=∫(1->+∞) (1+1/x^2)/[ (x - 1/x)^2 + 2] dx
=∫(0->π/2) √2 (secu)^2 du /[2(secu)^2 ]
=(√2/2) ∫(0->π/2) du
=(√2/4)π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询