求由参数方程x=ln√(1+t^2) y=arctant所确定的函数的导数求d^2y/dx^2
展开全部
x=ln√(1+t^2)
=(1/2)ln(1+t^2)
dx/dt = t/(1+t^2)
y=arctant
dy/dt = 1/(1+t^2)
dy/dx = (dy/dt)/(dx/dt) = 1/t
d/dt ( dy/dt ) = -1/t^2
d^2y/dx^2
=d/dt ( dy/dt )/ ( dx/dt)
=( -1/t^2) /[t/(1+t^2)]
= -(1+t^2)/t^3
=(1/2)ln(1+t^2)
dx/dt = t/(1+t^2)
y=arctant
dy/dt = 1/(1+t^2)
dy/dx = (dy/dt)/(dx/dt) = 1/t
d/dt ( dy/dt ) = -1/t^2
d^2y/dx^2
=d/dt ( dy/dt )/ ( dx/dt)
=( -1/t^2) /[t/(1+t^2)]
= -(1+t^2)/t^3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询