∫1/√(1+e^x)dx
展开全部
解:原式=2∫e^-xd(√1+e^x)
令t=√1+e^x,则e^-x=1/2(1/(t-1)-1/t+1)
则原式=∫(1/(t-1)-1/(t+1)dt
=ln(t-1)/(t+1)+C
再将t=√1+e^x带入即可求得
令t=√1+e^x,则e^-x=1/2(1/(t-1)-1/t+1)
则原式=∫(1/(t-1)-1/(t+1)dt
=ln(t-1)/(t+1)+C
再将t=√1+e^x带入即可求得
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I=∫[-1,1] x?/(1+e^x)dx 令t=-x 则 I=∫[1,-1] t?/[1+e^(-t)] d(-t) =∫[-1,1] t?/[1+e^(-t)] dt =∫[-1,1] t? e^t/(1+e^t) dt =∫[-1,1] x? e^x/(1+e^x)dx 所以 I=1/2∫[-1,1] x?/(1+e^x)dx+1/2∫[-1,1] x?e^x/(1+e^x)dx =1/2∫[-1,1] x?dx=∫[0,1] x?dx=1/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询