三角函数sin cos tan cot 之间转换的公式
展开全部
tanA=sinA/
cos
A
tanA=1/cotA
(sinA)^2+(
cos
A)^2=1
正弦定理
a/sinA=b/sinB=c/sinC
余弦定理
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
(1)二倍角公式:
(a)sin2a=2×sina×cosa
(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2
(c)tan2a=
2tana/(1-tana^2)
(2)以正切表示二倍角
(a)sin2a=
2tana/(1+tana^2)
(b)cos2a=
(1-tana^2)/(1+tana^2)
(c)
tan2a=
2tana/(1-tana^2)
(3)三倍角公式
(a)sin3a=3sina
-4sina^3
(b)cos3a=4cosa^3
-3cosa1、积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
sinαcosβ=1/2[sin(α+β)+sin(α-β)]
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(φ-θ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
cos
A
tanA=1/cotA
(sinA)^2+(
cos
A)^2=1
正弦定理
a/sinA=b/sinB=c/sinC
余弦定理
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ac*cosB
c^2=a^2+b^2-2ab*cosC
(1)二倍角公式:
(a)sin2a=2×sina×cosa
(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2
(c)tan2a=
2tana/(1-tana^2)
(2)以正切表示二倍角
(a)sin2a=
2tana/(1+tana^2)
(b)cos2a=
(1-tana^2)/(1+tana^2)
(c)
tan2a=
2tana/(1-tana^2)
(3)三倍角公式
(a)sin3a=3sina
-4sina^3
(b)cos3a=4cosa^3
-3cosa1、积化和差公式:
sinαsinβ=-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
sinαcosβ=1/2[sin(α+β)+sin(α-β)]
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
2、和差化积公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(φ-θ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]sin[(φ-θ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询