求极限,最好有详细过程,谢谢
lim x*[ln(x+1)-lnx]
=limx*ln[(x+1)/x]
=limx*ln(1+1/x)
=lim ln(1+1/x)^x
=ln lim(1+1/x)^x
=lne = 1 注:当 x→∞时,lim(1+1/x)^x = e。这是一个基本极限公式
lim[√(x^2+x) -√(x^2-x)]
=lim[√(x^2+x) -√(x^2-x)]*[√(x^2+x) +√(x^2-x)]/[√(x^2+x) +√(x^2-x)]
=lim[(x^2+x) -(x^2-x)]/[√(x^2+x) + √(x^2-x)]
=lim 2x/[√(x^2+x) +√(x^2-x)]
=lim2/[√(1+1/x) +√(1-1/x)]
=lim2/[√(1+0) +√(1-0)]
=1
lim[√(x+1) -√(3-x)]/(x-1)
=lim[√(x+1) -√(3-x)]*[√(x+1) + √(3-x)]/{(x-1)*[√(x+1) +√(3-x)]}
=lim[(x+1) -(3-x)]/{(x-1)*[√(x-1) +√(3-x)]}
=lim2(x-1)/{(x-1)*[√(x+1) + √(3-x)]}
=lim 2/[√(x+1) +√(3-x)]
=lim 2/[√(1+1) + √(3-1)]
=lim 2/(2√2)=√2/2
设 t = 3/x,则当 x →∞时,t→0。那么,
lim(1+3/x)^(2x+1)
=lim(1+t)^(6/t +1)
=lim(1+t)^(6/t) * (1+t)
=lim[(1+t)^(1/t)]^6 *lim(1+t)
=e^6 * 1 = e^6
为什么ln(x+1)-lnx,能变成ln(x+1)/x。公式?
这是对数函数的基本性质:
ln(x*y) = lnx + lny
ln(x/y) = lnx + ln(1/y) = lnx + lny^(-1) = lnx + (-1)*lny = lnx - lny