lim(x→0)(e^x-e^sinx)/(x-sinx)=

 我来答
茹翊神谕者

2021-06-17 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25125

向TA提问 私信TA
展开全部

简单计算一下即可,答案如图所示

伊秀荣夙静
2020-01-17 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.3万
采纳率:33%
帮助的人:696万
展开全部
解答:
用罗比达法则,即分子分母同时求导!(0/0型)
原式=lim(x→0)[e^x-e^(-x)]/sinx
=lim(x→0)[e^x+e^(-x)]/cosx(洛比达法则)
=lim(x→0)[e^0+e^(-0)]/cos0(将x=0带入)
=lim(x→0)(1+1)/1
=2
但愿我的解答对你有帮助!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式