概率论题。。。求

1、设连续型随机变量X的分布函数为F(x)=Ae^x,x<0B,0<=x<11-Ae^-(x-1),x>=1求:(1)A和B(2)随机变量X的密度函数(3)P(X>1/3... 1、设连续型随机变量X的分布函数为
F(x)= Ae^x , x<0
B, 0<=x<1
1-Ae^-(x-1), x>=1
求:(1)A和B (2)随机变量 X的密度函数 (3)P(X>1/3)

2、设连续型随机变量X的密度函数为
f(x)=e^-x, x>=0
0, x<0
求随机变量Y=e^X的概率密度函数f(y)

谢谢谢谢。。。。具体过程哦。。。
展开
artintin
2014-05-04 · TA获得超过1.2万个赞
知道大有可为答主
回答量:7508
采纳率:80%
帮助的人:2847万
展开全部
(3)P(X>1/3)=1-P(X<=1/3)=1-F(1/3)=1-B=1/2

2、先计算分布函数F(y)
当y<= 0 时 P(Y<y)=0
当y> 0 时 P(Y<y)=P(X<lny)
再分情况 0<y<=1 时lny<=0 P(X<lny)=0
y>1 P(X<lny)=e^(-x) 从0到lny的积分= 1-1/y
合并得 F(y)=1-1/y y>1 其他等于0
求导得到 f(y)=1/y^2 y>1 其他等于0
夏之心梦
2014-05-04 · TA获得超过1090个赞
知道小有建树答主
回答量:249
采纳率:0%
帮助的人:104万
展开全部
答:因为连续得A=B=1/2;
密度函数就是求F(X)'
(3)因为0<=X<=1,所以要分情况讨论,以1为分界点

第二大题,用公式法在概率论与数理统计(戴琳主编,高等教育出版社)P36
追问
第一题的(1)(2)会,需要(3)的过程和第二大题的详细过程。谢谢。。不懂的。
追答
(3)当1/31时,     P{X>1}=1-P{X<=1}=1-(1-Ae^-(x-1))=e^(1-x)
也可以先求出F(X)',然后通过积分求解
这题的方法在书上P31页
第二大题
因为f(x)=e^-x是单调可导函数, 由公式法可得
f(y)=fX[-lny]*-1/y=-1, 0<y<1;
=0 , 其他;
公式在概率论与数理统计(戴琳主编,高等教育出版社)P36
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式