函数收敛和发散问题!急!
4个回答
展开全部
1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
拓展:函数在数学上的定义为给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
拓展:函数在数学上的定义为给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数。
展开全部
1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
二、1.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|
0,存在c>0,对任意x1,x2满足0<|x1-x0|
评论
0
0
加载更多
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
二、1.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|
0,存在c>0,对任意x1,x2满足0<|x1-x0|
评论
0
0
加载更多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询