函数收敛和发散问题!急!

 我来答
困在植物界的小冉
2021-12-05 · 困在植物界不能自拔,领略植物界的风采吧!
困在植物界的小冉
采纳数:286 获赞数:12357

向TA提问 私信TA
展开全部
1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
拓展:函数在数学上的定义为给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数。
华萤远程
2021-12-05 · TA获得超过6.9万个赞
知道大有可为答主
回答量:6.8万
采纳率:100%
帮助的人:2330万
展开全部
1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
3.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|,存在c>0,对任意x1,x2满足0<|x1-x0。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大地的仙女bb
2021-12-15 · 超过29用户采纳过TA的回答
知道答主
回答量:131
采纳率:0%
帮助的人:3.1万
展开全部
发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
买宕闾丘志文
2019-06-06 · TA获得超过4037个赞
知道大有可为答主
回答量:3109
采纳率:33%
帮助的人:479万
展开全部
一、1.发散与收敛对于数列和函数来说,它就只是一个极限的概念,一般来说如果它们的通项的值在变量趋于无穷大时趋于某一个确定的值时这个数列或是函数就是收敛的,所以在判断是否是收敛的就只要求它们的极限就可以了.对于证明一个数列是收敛或是发散的只要运用书上的定理就可以了。
2.对于级数来说,它也是一个极限的概念,但不同的是这个极限是对级数的部分和来说的,在判断一个级数是否收敛只要根据书上的判别法就行了。
二、1.收敛数列令为一个数列,且a为一个固定的实数,如果对于任意给出的b>0,存在一个正整数n,使得对于任意n>n,有|an-a|
0,存在c>0,对任意x1,x2满足0<|x1-x0|
评论
0
0
加载更多
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式