
已知abc是正实数,且a+b+c=1,求证a+b+c≥1/3
展开全部
a+b+c=1 (a+b+c)^2=(a2+b2+c2)+2(ab+bc+ca)=1 因为(a2+b2)>=2ab,b^2+c^2>=2bc,c^2+a^2>=2ac, 所以(a2+b2+c2)>=(ab+bc+ca) 1=(a2+b2+c2)+2(ab+bc+ca)>=3(a2+b2+c2) a2+b2+c2≥1/3请点击“采纳为答案”
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询