1/x^8*(1+x^2)的不定积分 是1/(x^8*(1+x^2))

 我来答
俎饮桑志泽
2020-04-30 · TA获得超过1112个赞
知道小有建树答主
回答量:1842
采纳率:96%
帮助的人:8.9万
展开全部
若是∫(1+x²)/x^8 dx
= ∫(x^-8 + x^-6) dx
= x^(-8+1) / (-8+1) + x^(-6+1) / (-6+1) + C
= -1/[7x^7] - 1/[5x^5]
= -[7x²+5] / [35x^7] + C
若是∫dx/[x^8(1+x²)]
令1/[x^8*(1+x²)] = A/x^8 + B/x^6 + C/x^4 + D/x^2 + E/(x²+1)
待定系数法,召唤答案~
A = 1,B = -1,C = 1,D = -1,E = 1
原式= ∫[1/x^8 - 1/x^6 + 1/x^4 - 1/x^2 + 1/(x²+1)] dx
= -1/[7x^7] + 1/[5x^5] + 1/[3x^3] + 1/x + arctanx + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式