设数列{an}的前n项和为Sn,a1=1,an=Sn/n+2(n-1)
2)设数列{1/(anan+1)}前n项和为Tn,证明:1/5≤Tn<1/4(3)是否存自然数n,使S1+(S2/2)+(S3/3)+...+(Sn/n)-(n-1)^2...
2)设数列{1/(anan+1)}前n项和为Tn,证明:1/5≤Tn<1/4
(3)是否存自然数n,使S1+(S2/2)+(S3/3)+...+(Sn/n)-(n-1)^2=2009
若存在,求n,若不存在,说明。 展开
(3)是否存自然数n,使S1+(S2/2)+(S3/3)+...+(Sn/n)-(n-1)^2=2009
若存在,求n,若不存在,说明。 展开
1个回答
展开全部
(1)
an=Sn/n+ 2(n-1)
Sn = nan-2n(n-1)
an = Sn-S(n-1)
= nan-2n(n-1) -(n-1)a(n-1) +2(n-1)(n-2)
an - a(n-1) =4
an - a1= 4(n-1)
an = 4n-3
(2)
bn = 1/[an.a(n+1)]
= (1/4)[ 1/(4n-3) - 1/(4n+1)]
Tn = b1+b2+...+bn
=(1/4)[ 1 - 1/(4n+1)]
= n/(4n+1)
= 1/4 - 1/[4(4n+1)]
Tn < 1/4
min Tn = T1 = 1/4 - 1/20 = 1/5
ie
1/5≤Tn<1/4
(3)
an=Sn/n+ 2(n-1)
Sn/n = an-2(n-1)
= 4n-3 -2(n-1)
= 2n-1
(S1/1)+(S2/2)+...+(Sn/n)-(n-1)^2
=n^2 -(n-1)^2
=2n-1 =2009
=> n=1005
an=Sn/n+ 2(n-1)
Sn = nan-2n(n-1)
an = Sn-S(n-1)
= nan-2n(n-1) -(n-1)a(n-1) +2(n-1)(n-2)
an - a(n-1) =4
an - a1= 4(n-1)
an = 4n-3
(2)
bn = 1/[an.a(n+1)]
= (1/4)[ 1/(4n-3) - 1/(4n+1)]
Tn = b1+b2+...+bn
=(1/4)[ 1 - 1/(4n+1)]
= n/(4n+1)
= 1/4 - 1/[4(4n+1)]
Tn < 1/4
min Tn = T1 = 1/4 - 1/20 = 1/5
ie
1/5≤Tn<1/4
(3)
an=Sn/n+ 2(n-1)
Sn/n = an-2(n-1)
= 4n-3 -2(n-1)
= 2n-1
(S1/1)+(S2/2)+...+(Sn/n)-(n-1)^2
=n^2 -(n-1)^2
=2n-1 =2009
=> n=1005
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询