1个回答
展开全部
f(1)=f(1+) = lim(x->1+) (x^2+1) =2
f(1-)=lim(x->1-) (ax+b) = a+b
a+b=2 (1)
f'(1+)
=lim(h->0) [((1+h)^2+1) -f(1) ]/h
=lim(h->0) [((1+h)^2+1) -2 ]/h
=lim(h->0) ( 2+h)
=2
f'(1-)
=lim(h->0) [a(h+1)+b -f(1) ]/h
=lim(h->0) [a(h+1)+b -2 ]/h
=lim(h->0) [ah+(a+b -2)]/h
=2
=>a=2
from (1)
a+b=2
b=0
(a,b)=(2,0)
f(1-)=lim(x->1-) (ax+b) = a+b
a+b=2 (1)
f'(1+)
=lim(h->0) [((1+h)^2+1) -f(1) ]/h
=lim(h->0) [((1+h)^2+1) -2 ]/h
=lim(h->0) ( 2+h)
=2
f'(1-)
=lim(h->0) [a(h+1)+b -f(1) ]/h
=lim(h->0) [a(h+1)+b -2 ]/h
=lim(h->0) [ah+(a+b -2)]/h
=2
=>a=2
from (1)
a+b=2
b=0
(a,b)=(2,0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询