(2012?内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达
(2012?内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于...
(2012?内江)如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.
展开
1个回答
展开全部
∵正△ABC的边长为3cm,
∴∠A=∠B=∠C=60°,AC=3cm.
①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);
根据余弦定理知cosA=
,
即
=
,
解得,y=x2-3x+9(0≤x≤3);
该函数图象是开口向上的抛物线;
②当3<x≤6时,即点P在线段BC上时,PC=(6-x)cm(3<x≤6);
则y=(6-x)2=(x-6)2(3<x≤6),
∴该函数的图象是在3<x≤6上的抛物线;
故选C.
∴∠A=∠B=∠C=60°,AC=3cm.
①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);
根据余弦定理知cosA=
AP2+AC2?PC2 |
2PA?AC |
即
1 |
2 |
x2+9?y |
6x |
解得,y=x2-3x+9(0≤x≤3);
该函数图象是开口向上的抛物线;
②当3<x≤6时,即点P在线段BC上时,PC=(6-x)cm(3<x≤6);
则y=(6-x)2=(x-6)2(3<x≤6),
∴该函数的图象是在3<x≤6上的抛物线;
故选C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询