设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有f(a)+f(b)a+b>0.(1)
设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有f(a)+f(b)a+b>0.(1)若a>b,试比较f(a)与f(b)的大小...
设f(x)是定义在[-1,1]上的奇函数,且对任意的a,b∈[-1,1],当a+b≠0时,都有f(a)+f(b)a+b>0.(1)若a>b,试比较f(a)与f(b)的大小;(2)解不等式f(x?12)<f(x?14);(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.
展开
1个回答
展开全部
(1)设-1≤x1<x2≤1,由奇函数的定义和题设条件,得
f(x2)?f(x1)=f(x2)+f(?x1)=
(x2?x1)>0,
∴f(x)在[-1,1]上是增函数.
∵a,b∈[-1,1],且a>b,
∴f(a)>f(b).
(2)∵f(x)是[-1,1]上的增函数,
∴不等式f(x?
)<f(x?
)等价于
?
解得?
≤x≤
∴原不等式的解集是{x|?
≤x≤
}.
(3)设函数g(x),h(x)的定义域分别是P和Q,
则P={x|-1≤x-c≤1}=x|c-1≤x≤c+1},
Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2
f(x2)?f(x1)=f(x2)+f(?x1)=
f(x2)+f(?x1) |
x2+(?x1) |
∴f(x)在[-1,1]上是增函数.
∵a,b∈[-1,1],且a>b,
∴f(a)>f(b).
(2)∵f(x)是[-1,1]上的增函数,
∴不等式f(x?
1 |
2 |
1 |
4 |
|
|
1 |
2 |
5 |
4 |
∴原不等式的解集是{x|?
1 |
2 |
5 |
4 |
(3)设函数g(x),h(x)的定义域分别是P和Q,
则P={x|-1≤x-c≤1}=x|c-1≤x≤c+1},
Q={x|-1≤x-c2≤1}={x|c2-1≤x≤c2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载