设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),(1)设bn=an+1-2an,求证:数列{bn}是等比数列
设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),(1)设bn=an+1-2an,求证:数列{bn}是等比数列;(2)cn=an2n,求证:数...
设数列{an}的前n项和为Sn,且a1=1,Sn+1=4an+2(n∈N*),(1)设bn=an+1-2an,求证:数列{bn}是等比数列;(2)cn=an2n,求证:数列{cn}是等差数列; (3)求Sn=a1+a2+…+an的值.
展开
青灯凝5887
2014-11-12
·
超过56用户采纳过TA的回答
知道答主
回答量:135
采纳率:0%
帮助的人:52.2万
关注
(1)由题意,S
n+1=4a
n+2,S
n+2=4a
n+1+2,两式相减,得S
n+2-S
n+1=4(a
n+1-a
n)
即a
n+2=4a
n+1-4a
n.
∴a
n+2-2a
n+1=2(a
n+1-2a
n)
∵b
n=a
n+1-2a
n∴b
n+1=2b
n(n∈N
*),
q=
=2,
又由题设,得1+a
2=4+2=6,即a
2=5
b
1=a
2-2a
1=3,
∴数列{b
n}是首项为3,公比为2的等比数列,其通项公式为b
n=3?2
n-1.
(2)由题设,可得c
n+1-c
n=
?=
=
=
=
数列{c
n}是公差为
的等差数列.
又 c
1=
=
∴c
n=
n?(3)∵c
n=
n?,∴a
n=
n×2n?×2n,
a
n-1=
2n?1(n?1)∴S
n=a
1+a
2+…+a
n=4×
2n?1(n?1)+2=(3n-4)2
n-1+2.
收起
为你推荐: