sinx的n阶导数是什么?

 我来答
帐号已注销
2021-05-20 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

(sinx)'=cosx=sin(x+π/2)

(sinx)''=[sin(x+π/2)]'=cos[x+(π/2)]=sin[x+2(π/2)]

(sinx)^(n)=[sin(x+(n-1)(π/2))]'=cos[x+(n-1)(π/2)]=sin[x+n(π/2)]

导数的计算

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

以上内容参考:百度百科-导数

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
鲨鱼星小游戏
高粉答主

2021-05-20 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238406

向TA提问 私信TA
展开全部

sinx的n阶导数计算过程如下:

可以令:u=sinx

那么:u '=cosx

则:y=(sinx)^n=u^n

故:y '=n u^(n-1)×u ’

=n[u^(n-1)]cosx

=ncosx (sinx)^(n-1)

不是所有的函数都可以求导;

可导的函数一定连续,但连续的函数不一定可导(如y=|x|在y=0处不可导)。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式