如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D
如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D,与x轴交于另一点B.点E坐标为(0,-2),点P是...
如图,平面直角坐标系中,O为坐标原点,抛物线y=ax2-2ax+b经过A(-2,0),C(2,8)两点,与y轴交于点D,与x轴交于另一点B.点E坐标为(0,-2),点P是线段BO上的一个动点,从点B开始以1个单位每秒的速度沿BO向终点O运动;(1)求此抛物线的解析式;(2)设运动时间为t秒,直线PE扫过四边形ABCD的面积为S,求S关于t的函数关系式;(3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在抛物线上?若能,请直接写出旋转中心的坐标;若不能,请说明理由.
展开
1个回答
展开全部
(1)y=ax2-2ax+b=a(x-1)2-a+b,
∵过点A(-2,0),C(2,8),
∴
解得
.
故此抛物线的解析式为y=-x2+2x+8;
(2)由抛物线的解析式为y=-x2+2x+8可得B(4,0),
∵P(4-t,0),E(0,-2),
设一次函数EP的解析式为y=kx+b,将P(4-t,0),E(0,-2)分别代入解析式得,
,
解得,
,
一次函数解析式为y=
x-2.
设BC的解析式为y=ax+c,
将C(2,8),B(4,0)代入解析式得,
,
解得
,
函数解析式为y=-4x+16.
将y=-4x+16和y=
x-2组成方程组得,
,
解得
,
S=
×(4-t)×
=
.
(3)分为3种情况,①旋转后OE在抛物线上;②旋转后OB在抛物线上;③旋转后BE在抛物线上.
1、旋转后OE在抛物线上:
设为O′E′,则O′E′平行于x轴,抛物线y=-x2+2x+8=-(x-1)2+9,对称轴x=1,
则x1=1-
|OE|=1-1=0,x2=1+1=2.
则两点为(0,8)、(2,8).
这时分别:①O′(0,8)、E′(2,8);
②E′(0,8)、O′(2,8).
然后分两种情况分别作OO',EE'的中垂线,其交点即为其旋转中心.
∵OO′的解析式为y=4,易得,EE′的解析式为y=5x-2,则EE′的中点坐标为(1,3),
其中垂线解析式为y=-
x+b,将(1,3)代入解析式得,b=
,
则解析式为y=-
x+
,当y=4时,x=-4.
旋转中心坐标为(-4,4).
2、旋转后OB在抛物线上:
OB∥y轴,则O′B′∥x轴,但抛物线y=-x2+2x+8=-(x-1)2+9,不成立.
3、旋转后BE在抛物线上:
BE边旋转90°后所得线段B'E'与BE垂直,直线斜率kBE=
,则kB'E'=-2.
设旋转后B'E'所在直线方程为:y=-2x+m.
抛物线:y=-x2+2x+8,联立,解方程,得:
(x,y)=(2+
∵过点A(-2,0),C(2,8),
∴
|
解得
|
故此抛物线的解析式为y=-x2+2x+8;
(2)由抛物线的解析式为y=-x2+2x+8可得B(4,0),
∵P(4-t,0),E(0,-2),
设一次函数EP的解析式为y=kx+b,将P(4-t,0),E(0,-2)分别代入解析式得,
|
解得,
|
一次函数解析式为y=
2 |
4?t |
设BC的解析式为y=ax+c,
将C(2,8),B(4,0)代入解析式得,
|
解得
|
函数解析式为y=-4x+16.
将y=-4x+16和y=
2 |
4?t |
|
解得
|
S=
1 |
2 |
4t |
9?2t |
2t(4?t) |
9?2t |
(3)分为3种情况,①旋转后OE在抛物线上;②旋转后OB在抛物线上;③旋转后BE在抛物线上.
1、旋转后OE在抛物线上:
设为O′E′,则O′E′平行于x轴,抛物线y=-x2+2x+8=-(x-1)2+9,对称轴x=1,
则x1=1-
1 |
2 |
则两点为(0,8)、(2,8).
这时分别:①O′(0,8)、E′(2,8);
②E′(0,8)、O′(2,8).
然后分两种情况分别作OO',EE'的中垂线,其交点即为其旋转中心.
∵OO′的解析式为y=4,易得,EE′的解析式为y=5x-2,则EE′的中点坐标为(1,3),
其中垂线解析式为y=-
1 |
5 |
16 |
5 |
则解析式为y=-
1 |
5 |
16 |
5 |
旋转中心坐标为(-4,4).
2、旋转后OB在抛物线上:
OB∥y轴,则O′B′∥x轴,但抛物线y=-x2+2x+8=-(x-1)2+9,不成立.
3、旋转后BE在抛物线上:
BE边旋转90°后所得线段B'E'与BE垂直,直线斜率kBE=
1 |
2 |
设旋转后B'E'所在直线方程为:y=-2x+m.
抛物线:y=-x2+2x+8,联立,解方程,得:
(x,y)=(2+
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|