线性代数中。A是n阶矩阵,A中有n-1阶子式非0,则Aij(代数余子式)不等于0。为什么?

 我来答
小小芝麻大大梦
高粉答主

2019-06-14 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:986万
展开全部

Aij就是aij这个元素划掉所在行与列,剩下的元素构成的行列式*(-1)^(i+j),这个剩下的行列式不就是n-1阶子式嘛,按题设,这个子式非0,那这个子式*(-1)^(i+j),最多就变一下符号,必然也是非0的,也就是Aij非0。

在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式。

一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

扩展资料:

设A为一个 m×n 的矩阵,k为一个介于1和m之间的整数,并且m≤n。A的一个k阶子式是在A中选取k行k列之后所产生的k个交点组成的方块矩阵的行列式。

A的一个k阶余子式是A去掉了m−k行与n−k列之后得到的k×k矩阵的行列式。由于一共有k种方法来选择该保留的行,有k种方法来选择该保留的列,因此A的k阶余子式一共有 Ckm*Ckn个。

如果m=n,那么A关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式,简称为A的k阶余子式。

n×n的方块矩阵A关于第i行第j列的余子式Mij是指A中去掉第i行第j列后得到的n−1阶子矩阵的行列式。有时可以简称为A的(i,j)余子式。

轮看殊O
高粉答主

2019-06-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:755万
展开全部

Aij就是aij这个元素划掉所在行与列,剩下的元素构成的行列式*(-1)^(i+j),这个剩下的行列式不就是n-1阶子式嘛,按题设,这个子式非0,那这个子式*(-1)^(i+j),最多就变一下符号,必然也是非0的,也就是Aij非0。

在n阶行列式中,把元素aₒₑi所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素aₒₑi的余子式,记作Mₒₑ,将余子式Mₒₑ再乘以-1的o+e次幂记为Aₒₑ,Aₒₑ叫做元素aₒₑ的代数余子式

一个元素aₒₑi的代数余子式与该元素本身没什么关系,只与该元素的位置有关。

扩展资料

一个方阵与其伴随矩阵的秩的关系:

1、如果 A 满秩,则 A* 满秩;

2、如果 A 秩是 n-1,则 A* 秩为 1 ;

3、如果 A 秩 < n-1,则 A* 秩为 0 。(也就是 A* = 0 矩阵)

n×n的方块矩阵A关于第i行第j列的余子式Mij是指A中去掉第i行第j列后得到的n−1阶子矩阵的行列式。有时可以简称为A的(i,j)余子式。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nowaygod
推荐于2017-09-01 · TA获得超过109个赞
知道答主
回答量:22
采纳率:0%
帮助的人:21.7万
展开全部
Aij就是aij这个元素划掉所在行与列,剩下的元素构成的行列式*(-1)^(i+j),这个剩下的行列式不就是n-1阶子式嘛,按题设,这个子式非0,那这个子式*(-1)^(i+j),最多就变一下符号,必然也是非0的,也就是Aij非0
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式