5个回答
展开全部
倍角公式是从两角和的三角函数推来的
两角和的三角函数公式:
sin(x+y) = sinxcosy+cosxsiny
cos(x+y) = cosxcosy-sinxsiny
则 1+cosx = 1+cos(x/2+x/2) = 1+[cos(x/2)]^2- [sin(x/2)]^2
= [cos(x/2)]^2+ [cos(x/2)]^2 = 2[cos(x/2)]^2
两角和的三角函数公式:
sin(x+y) = sinxcosy+cosxsiny
cos(x+y) = cosxcosy-sinxsiny
则 1+cosx = 1+cos(x/2+x/2) = 1+[cos(x/2)]^2- [sin(x/2)]^2
= [cos(x/2)]^2+ [cos(x/2)]^2 = 2[cos(x/2)]^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是三角函数里的倍角公式啊,都完全没有变换的,原式就是如此
追问
谢谢,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
高粉答主
2022-02-28 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
1+cosx=1+cos2·x/2
=1+1-2sin²x/2
=2-2sin²x/2
1+cosx=1+2cos²x/2-1=2cos²x/2
=1+1-2sin²x/2
=2-2sin²x/2
1+cosx=1+2cos²x/2-1=2cos²x/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+cosx
=1+cos[2(x/2)]
=1+(2cos²x/2-1)
=2cos²(x/2)
=1+cos[2(x/2)]
=1+(2cos²x/2-1)
=2cos²(x/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询