
求数列1/1+2,1/1+2+3,1/1+2+3+4,…的前n项和
1个回答
展开全部
1+1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n)
=1+ 2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=1+2(1/2-1/3+1/3-1/4+...+1/n-1/(n+1))
=1+2[1/2-1/(n+1)]
=2-2/(n+1)
=2n/(n+1)
当n趋于无穷大时 (n-1)/(n+1) =1,即Xn=1+1/(1+2)+1/(1+2+3)+……+1/(1+2+……+n)为2
=1+ 2/2*3+2/3*4+2/4*5+......+2/n(n+1)
=1+2(1/2-1/3+1/3-1/4+...+1/n-1/(n+1))
=1+2[1/2-1/(n+1)]
=2-2/(n+1)
=2n/(n+1)
当n趋于无穷大时 (n-1)/(n+1) =1,即Xn=1+1/(1+2)+1/(1+2+3)+……+1/(1+2+……+n)为2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询