(1)设实数a、b、c满足|a-2b|+√(3b-c)+(3a-2c)^2=0,则a:b:c=________.
展开全部
绝对值,平方,根号都大于等于0
相加等于0则都等于0
a-2b=0
3b-c=0
3a-2c=0
所以a=2b,c=3b
所以a:b:c=2b:b:3b=2:1:3
c^2=ab=144
所以c=12或-12
令(a+2)/3 = b/4 = (c+5)/6=k
a+2=3k,a=3k-2
同理b=4k,c=6k-5
所以2a-b+3c=6k-4-4k+18k-15=21
k=2
a=4,b=8,c=7
a:b:c=4:8:7
相加等于0则都等于0
a-2b=0
3b-c=0
3a-2c=0
所以a=2b,c=3b
所以a:b:c=2b:b:3b=2:1:3
c^2=ab=144
所以c=12或-12
令(a+2)/3 = b/4 = (c+5)/6=k
a+2=3k,a=3k-2
同理b=4k,c=6k-5
所以2a-b+3c=6k-4-4k+18k-15=21
k=2
a=4,b=8,c=7
a:b:c=4:8:7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询