高数空间几何大神 求告知空间里点到直线的距离公式

 我来答
河传杨颖
高粉答主

2019-06-17 · 说的都是干货,快来关注
知道小有建树答主
回答量:745
采纳率:100%
帮助的人:20.6万
展开全部

设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:

考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)

d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)

证明:

定义法

证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,

设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A

则l'的解析式为y-y₀=(B/A)(x-x₀),由两点间距离公式得

PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2

=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2

=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2

=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(Ax₀+By₀+C)^2/(A^2+B^2)

所以PQ=|Ax₀+By₀+C|/√(A^2+B^2),公式得证。

扩展资料

一、点线距离求法:

1、距离公式

2、在三角形中求

3、转化为向量的摸长问题.
二、点面距离有:

1、直接法(即找出点面距离,在三角形中求),

2、体积转换法,

3、向量法,

4、转化法(即转化为点线距离,线线距离,线面距离,面面距离)

三、平面点到直线距离 :

点(x0, y0),直线:A*x+B*y+C=0,距离d。 d=|A*x0+B*y0+C|/√(A*A+B*B)

四、空间点到平面距离 :

点(x0, y0, z0),平面:A*x+B*y+C*z+D=0,距离d。 d=|A*x0+B*y0+C*z0+D|/√(A*A+B*B+C*C)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式