dF(x)=f(x)dx是什么意思,麻烦非常透彻的解释一下每个符号的意义。微分积分符号一直没弄懂,
d表示令增量趋于0,df(x)同样表示令f(x)趋于0,但由于f(x)和x有函数关系,所以df(x)与dx也不能与之违背,时刻保持函数关系。比如当f(x)=2x时,无论dx即x的增量是多少,f(x)的增量始终是其2倍,故df(x)/dx=2,而不能因为0/0认为其无意义。
f(x)dx其实是省略了乘号,f(x)*dx;一元微分复合四则运算定律,所以可以等式两边同除同乘移项,这个式子其实就是dF(x)/dx=f(x)
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
d表示令增量趋于0,df(x)同样表示令f(x)趋于0,但由于f(x)和x有函数关系,所以df(x)与dx也不能与之违背,时刻保持函数关系。比如当f(x)=2x时,无论dx即x的增量是多少,f(x)的增量始终是其2倍,故df(x)/dx=2,而不能因为0/0认为其无意义。
f(x)dx其实是省略了乘号,f(x)*dx;一元微分复合四则运算定律,所以可以等式两边同除同乘移项,这个式子其实就是dF(x)/dx=f(x)
扩展资料:
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
以y=x2 为例,我们需要求出该曲线在(3,9)上的斜率,当△x与△y的值越接近于0,过这两点直线的斜率就越接近所求的斜率m,当△x与△y的值变得无限接近于0时,直线的斜率就是点的斜率。
f(x)dx其实是省略了乘号,f(x)*dx;一元微分复合四则运算定律,所以可以等式两边同除同乘移项,这个式子其实就是dF(x)/dx=f(x)
这也是导数的定义