集合的性质
相关如下:
1、确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。例:“大于1的实数”可以构成一个集合。
2、互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
3、无序性:集合中的元素是平等的,没有先后顺序。因此判定两个集合是否相同,只需要比较他们的元素是否一样,不需考察排列顺序是否一样。如:{a,b,c}={a,c,b}。
简介:
集合是数学的基本概念之一,具有某种特定属性的事物的全体称为"集",而元素就是组成集的每个事物。
研究集的运算及其性质的数学分支叫做集论或集合论集合的定义很广,不仅限于数学,在生产生活中对于集合的使用也是很广泛的,而组成特定集合的具有特定属性的事物全部都可以称做元素,所以元素的定义也很广泛,
某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
扩展资料:
表示方法
表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。
列举法
列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。如正整数集和整数集可以分别表示为和。
描述法
描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。例如,由2的平方根组成的集合B可表示为B={x|x2=2}。
图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
2024-11-22 广告