对数函数的导数公式

 我来答
小琼谈教育
高能答主

2019-07-18 · 生活常识我知晓,多知道一些总是好的
小琼谈教育
采纳数:654 获赞数:387965

向TA提问 私信TA
展开全部

对数函数的导数公式:

一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数

底数则要>0且≠1 真数>0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a>1时)

如果底数一样,真数越小,函数值越大。(0<a<1时)

扩展资料

性质:

定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1

和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}

值域:实数集R,显然对数函数无界;

定点:对数函数的函数图像恒过定点(1,0);

单调性:a>1时,在定义域上为单调增函数

0<a<1时,在定义域上为单调减函数

奇偶性:非奇非偶函数

周期性:不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数。

邬增岳管婵
2019-11-06 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:889万
展开全部
对数函数的导数公式:
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1
真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
扩展资料
性质:
定义域求解:对数函数y=logax
的定义域是{x
丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0
,得到x>1/2且x≠1,即其定义域为
{x
丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;
0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
盍杨氏浦丁
2019-04-17 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.4万
采纳率:31%
帮助的人:826万
展开全部
对数函数的导数公式:
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1
真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<a<1时)
扩展资料
性质:
定义域求解:对数函数y=logax
的定义域是{x
丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0
,得到x>1/2且x≠1,即其定义域为
{x
丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界;
定点:对数函数的函数图像恒过定点(1,0);
单调性:a>1时,在定义域上为单调增函数;
0<a<1时,在定义域上为单调减函数;
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
昨天刚下的帝国
推荐于2017-12-05 · TA获得超过1.7万个赞
知道大有可为答主
回答量:3215
采纳率:87%
帮助的人:1624万
展开全部

11),12)是对数的

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友af34c30f5
2017-12-02 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:7032万
展开全部

(loga x)'=1/(xlna)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式