机器学习算法中GBDT和XGBOOST的区别有哪些
1个回答
2016-11-16
展开全部
尝试回答一下
首先xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法。xgboost里面的基学习器除了用tree(gbtree),也可用线性分类器(gblinear)。而GBDT则特指梯度提升决策树算法。
xgboost相对于普通gbm的实现,可能具有以下的一些优势:
显式地将树模型的复杂度作为正则项加在优化目标
公式推导里用到了二阶导数信息,而普通的GBDT只用到一阶
允许使用column(feature) sampling来防止过拟合,借鉴了Random Forest的思想,sklearn里的gbm好像也有类似实现。
4.实现了一种分裂节点寻找的近似算法,用于加速和减小内存消耗。
5.节点分裂算法能自动利用特征的稀疏性。
6.data事先排好序并以block的形式存储,利于并行计算
7.cache-aware, out-of-core computation,这个我不太懂。。
8.支持分布式计算可以运行在MPI,YARN上,得益于底层支持容错的分布式通信框架rabit。
首先xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法。xgboost里面的基学习器除了用tree(gbtree),也可用线性分类器(gblinear)。而GBDT则特指梯度提升决策树算法。
xgboost相对于普通gbm的实现,可能具有以下的一些优势:
显式地将树模型的复杂度作为正则项加在优化目标
公式推导里用到了二阶导数信息,而普通的GBDT只用到一阶
允许使用column(feature) sampling来防止过拟合,借鉴了Random Forest的思想,sklearn里的gbm好像也有类似实现。
4.实现了一种分裂节点寻找的近似算法,用于加速和减小内存消耗。
5.节点分裂算法能自动利用特征的稀疏性。
6.data事先排好序并以block的形式存储,利于并行计算
7.cache-aware, out-of-core computation,这个我不太懂。。
8.支持分布式计算可以运行在MPI,YARN上,得益于底层支持容错的分布式通信框架rabit。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询