二次根式的乘法法则
二次根式的乘法法则介绍如下:
二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
注意:
1、公式中的非负数的条件;
2、在被开方数相乘时,就应该考虑因式分解。
二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式。
二次根式的除法:
(1)法则:根a/根b =根a/b (a≥0且b>0)
(2)类型:
单项二次根式除以单项二次根式(应用运算法则计算)
多项二次根式除以单项二次根式(转化为单项二次根式除以单项二次根式)
除数是二个二次根式的和或是一个二次根式与一个有理数的和(把分母有理化进行运算,或与分式的运算类比思考,约去分子,分母中的公因式).
拓展资料:
一般地,形如√ a的代数式叫做二次根式,其中, a 叫做被开方数。当 a≥0时,√ a表示 a的算术平方根;当 a小于0时,√ a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。