参数方程求积分怎么求啊?
解答方法如图:
平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。
椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。
扩展资料:
参数曲线即用参数方程表示的曲线,参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变数,以决定因变数的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
如果函数f(x)及F(x)满足:
1、在闭区间[a,b]上连续;
2、在开区间(a,b)内可导;
3、对任一x∈(a,b),F'(x)≠0。
那么在(a,b)内至少有一点ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:
平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数。
曲线的极坐标参数方程ρ=f(t),θ=g(t)。
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。
椭圆的参数方程 x=a cosθ y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数。
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,联系变数x、y的变数t叫做参变数。相对而言,直接给出点坐标间关系的方程为普通方程。
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。
扩展资料
积分的保号性:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。作为推论,如果两个等于0,那么任何可积函数在A上的积分等于0。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果对中任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分,那么f几乎处处等于(大于等于)g。
参考资料来源:百度百科-参数方程
参考资料来源:百度百科-积分