2个回答
展开全部
设y=∫(0,π/2)f(sinx)/[f(sinx)+f(sinx)]dx
=∫(0,π/2)[f(sinx)+f(cosx)-f(cosx)]/[f(sinx)+f(cosx)]dx
=∫(0,π/2)[1-f(cosx)/[f(sinx)+f(cosx)]dx
=π/2-∫(0,π/2)f(cosx)/[f(sinx)+f(cosx)]dx
=π/2+∫(0,π/2)f(sint)/[f(sint)+f(cost)]dt 设t=π/2-x
=π/2+y
则2y=π/2
即y=∫(0,π/2)f(sinx)/[f(sinx)+f(sinx)]dx=π/4
=∫(0,π/2)[f(sinx)+f(cosx)-f(cosx)]/[f(sinx)+f(cosx)]dx
=∫(0,π/2)[1-f(cosx)/[f(sinx)+f(cosx)]dx
=π/2-∫(0,π/2)f(cosx)/[f(sinx)+f(cosx)]dx
=π/2+∫(0,π/2)f(sint)/[f(sint)+f(cost)]dt 设t=π/2-x
=π/2+y
则2y=π/2
即y=∫(0,π/2)f(sinx)/[f(sinx)+f(sinx)]dx=π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询