展开全部
令u=3次√(1-x),则x=1-u^3,dx=-3u^2
那么原式=∫((1-u^3)(-3u^2)/u)du
=∫(-3u^2+3u^5)/u)du
=∫(-3u+3u^4)du
=-3/2·u^2+3/5·u^5+C
=-3/2·(1-x)^(2/3)+3/5·(1-x)^(5/3)+C
那么原式=∫((1-u^3)(-3u^2)/u)du
=∫(-3u^2+3u^5)/u)du
=∫(-3u+3u^4)du
=-3/2·u^2+3/5·u^5+C
=-3/2·(1-x)^(2/3)+3/5·(1-x)^(5/3)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令 (1-3x)^(1/3) = u, 则 1-3x = u^3, x = (1-u^3)/3, dx = -u^2du
I = -(1/3)∫(1-u^3)udu = = -(1/3)∫(u-u^4)du
= -(1/3)[u^2/2 - u^5/5) + C = -(1/30)u^2(5 - 2u^3) + C
= -(1/10)(1+2x)(1-3x)^(2/3) + C
I = -(1/3)∫(1-u^3)udu = = -(1/3)∫(u-u^4)du
= -(1/3)[u^2/2 - u^5/5) + C = -(1/30)u^2(5 - 2u^3) + C
= -(1/10)(1+2x)(1-3x)^(2/3) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |