x->0
e^x -1 = x +(1/2)x^2 +(1/6)x^3 +(1/24)x^4 +o(x^4)
sin(e^x -1)
=sin[x +(1/2)x^2 +(1/6)x^3 +(1/24)x^4 +o(x^4) ]
=[x +(1/2)x^2 +(1/6)x^3 +(1/24)x^4 +o(x^4) ]
-(1/6)[x +(1/2)x^2 +(1/6)x^3 +(1/24)x^4 +o(x^4) ]^3 + o(x^4)
=[x +(1/2)x^2 +(1/6)x^3 +(1/24)x^4 +o(x^4) ]
-(1/6)[x^3 +(3/2)x^4 +o(x^4) ] + o(x^4)
=x +(1/2)x^2 - (5/24)x^4 +o(x^4)
sinx = x-(1/6)x^3 + o(x^4)
e^(sinx) -1
=e^[x-(1/6)x^3 + o(x^4)] -1
=[x-(1/6)x^3] +(1/2)[x-(1/6)x^3]^2 +(1/6)[x-(1/6)x^3]^3
+(1/24)[x-(1/6)x^3]^4+o(x^4)
= [x-(1/6)x^3] +(1/2)[x^2-(1/3)x^4+o(x^4)] +(1/6)[x^3 +o(x^4)]
+ (1/24)[x^4+o(x^4)]+o(x^4)
=x +(1/2)x^2 -(1/8)x^4 +o(x^4)
sin(e^x -1) -[ e^(sinx) -1 ]
=[ x +(1/2)x^2 - (5/24)x^4 +o(x^4) ] -[x +(1/2)x^2 -(1/8)x^4 +o(x^4)]
=-(1/12)x^4 +o(x^4)
lim(x->0) { sin(e^x -1) -[ e^(sinx) -1 ] }/x^4
=lim(x->0) -(1/12)x^4 /x^4
=-1/12
能不能写一下具体步骤,谢谢啦