展开全部
n/(n^2+1) +2n/(n^2+2^2)+...+n^2/(n^2+n^2)
≥n/(n^2+n^2) +2n/(n^2+n^2)+...+n^2/(n^2+n^2)
= n(1+2+3+...+n)/(n^2+n^2)
= n^2.(n+1)/(4n^2)
lim(n->+∞) n^2.(n+1)/(4n^2) ->+∞
=>
lim(n->+∞) [ n/(n^2+1) +2n/(n^2+2^2)+...+n^2/(n^2+n^2)] ->+∞
≥n/(n^2+n^2) +2n/(n^2+n^2)+...+n^2/(n^2+n^2)
= n(1+2+3+...+n)/(n^2+n^2)
= n^2.(n+1)/(4n^2)
lim(n->+∞) n^2.(n+1)/(4n^2) ->+∞
=>
lim(n->+∞) [ n/(n^2+1) +2n/(n^2+2^2)+...+n^2/(n^2+n^2)] ->+∞
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询