包含与真包含的区别
包含于;集合A的任意一个元素都是集合B的元素,2集合可能相等
真包含于;集合A的任意一个元素都是集合B的元素,但2集合不相等
包含于包括真包含于的情况,包含于可以是两个相等的集合之间的关系,例如集合A={1,2,3,4},B={1,2,3},C={1,2,3,4},则可以说B真包含于A,A包含于C,或C包含于A。
/iknow-pic.cdn.bcebos.com/5d6034a85edf8db19dd275860523dd54574e7457"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/5d6034a85edf8db19dd275860523dd54574e7457?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/5d6034a85edf8db19dd275860523dd54574e7457"/>
扩展资料:
相交,汉语词汇。释义为两条直线互相交叉在一起、交于一点。交朋友;做朋友。
如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。