在三角形ABC中,角B=2角C,AD是角BAC的平分线。证明AC=AB+BD

 我来答
小轨M
2019-11-28 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:25%
帮助的人:630万
展开全部
解:以点A为圆心,AB长为半径画弧,交AC于点E,连接BE与DE
所以AB=AE,所以∠ABE=∠AEB
因为AD平分角A,所以AD垂直平分BE,所以BD=DE
所以∠DBE=∠DEB
所以∠DBE+∠ABE=∠DEB+∠AEB
即∠AED=∠ABD=2∠C
所以∠EDC=∠AED-∠C=∠C
所以CE=DE=BD
所以AC=AE+CE=AB+BD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式