怎样证明非齐次线性方程组(系数矩阵秩=0)解向量与特解构成的向量组线性无关,谢谢

 我来答
嵇玉花说庚
2020-03-10 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:879万
展开全部
应该是:
非齐次线性方程组的特解与其导出组的基础解系构成的向量组
线性无关
设β是非齐次线性方程组AX=b的特解,
α1,...,αs
是AX=0的线性无关的解

kβ+k1α1+...+ksαs=0
等式两边左乘A得
kAβ
=
0

kb
=
0
因为b是非零向量,
所以
k
=
0
所以
k1α1+...+ksαs=0
再由α1,...,αs
线性无关

k1=...=ks=0
所以向量组
β,α1,...,αs
线性无关
仉丹雍诗
2019-11-04 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:908万
展开全部
设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)t(此向量是列向量,后同);η2+2η3=(3,4,5,6)t,求该方程组的通解。
解:
因为四元非齐次线性方程组的系数矩阵的秩为3
所以其导出组的基础解系含
4-3
=
1
个向量.
由齐次线性方程组的解与其导出组的解的性质知
η1川处贬肺撞镀鳖僧搏吉-η2,η1-η3
都是导出组的解.
所以
(η1-η2)+2(η1-η3)
=
3η1
-
(η2+2η3)
=
3(2,3,4,5)^t
-
(3,4,5,6)^t
=
(3,5,7,9)^t
是导出组的解.
故该方程组的通解为
(2,3,4,5)^t
+
c(3,5,7,9)^t.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式