求初二数学题图形与几何解题?
△ABC为等腰三角形,AB=AC,AD丄BC于点D,EF为腰AC中垂线,且交AD于点F,连接BF.如图,延长BF交AC于点H,连接DE,当BF、DE的延长线交于点q时,作...
△ABC为等腰三角形,AB=AC,AD丄BC于点D,EF为腰AC中垂线,且交AD于点F,连接BF.
如图,延长BF交AC于点H,连接DE,当BF、DE的延长线交于点q时,作DN丄BF于点M交AB于点N,求证BN+DQ=AC. 展开
如图,延长BF交AC于点H,连接DE,当BF、DE的延长线交于点q时,作DN丄BF于点M交AB于点N,求证BN+DQ=AC. 展开
3个回答
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
1)∵Rt△ABC中,∠ACB=90°,∠A=30° ∴∠B=60° ∵使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F ∴∠FDE=30° ∵DE┴AB ∴∠FDB=60° ∴∠B=∠FDB=60° ∴△BDF是等边三角形(或正三角形)
2)∵△BDF是等边三角形 ∴BF=FD=BD ∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1 ∴AB=2 ∵BC=BF+CF,AB=AD+DB ∵AD=x,CF=y, BF=BD ∴y=x-1
3)连接EF ∵EF‖AB ∴∠FED=90°, ∠CEF=30° ∵∠A=30°,∠B=60° 设EF=x ∴DF=2x,DE=√3x,AD=3x,CF=1/2x ∵BF=FD=BD ∴BF=2x ∵BC=1 ∴BC=BF+CF=2x+1/2x=1 ∴x=2/5 ∴AD=3x=6/5
2)∵△BDF是等边三角形 ∴BF=FD=BD ∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=1 ∴AB=2 ∵BC=BF+CF,AB=AD+DB ∵AD=x,CF=y, BF=BD ∴y=x-1
3)连接EF ∵EF‖AB ∴∠FED=90°, ∠CEF=30° ∵∠A=30°,∠B=60° 设EF=x ∴DF=2x,DE=√3x,AD=3x,CF=1/2x ∵BF=FD=BD ∴BF=2x ∵BC=1 ∴BC=BF+CF=2x+1/2x=1 ∴x=2/5 ∴AD=3x=6/5
追问
你是认真的么
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询