一元三次方程的化简公式是什么?
1个回答
展开全部
一般的一元三次方程可写成ax^3+bx^2+cx+d=0,(a≠0) 的形式。上式除以a ,并设x=y-b/3a ,则可化为如下形式:y^3+py+q=0 ,其中p=(3ac-b^2)/(3a^2),q=(27(a^2)d-9abc+2b^3)/(27a^3) 。
可用特殊情况的公式解出y1,y2,y3 ,则原方程的三个根为x1=y1-b/(3a),x2=y2-b/(3a),x3=y3-b/(3a),三个根与系数的关系为x1+x2+x3=-b/a,1/x1+1/x2+1/x3=-c/d,x1x2x3=-d/a。
扩展资料:
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质:
(1)等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(2)等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式(不为0)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询