A,B为n阶方程,若A,B都是可逆矩阵,证明A^TB^T也是可逆矩阵,并求(A^TB^T)^-1.

 我来答
世纪网络17
2022-06-03 · TA获得超过5948个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
因为 A,B可逆
所以 |A|≠0,|B|≠0
所以 |A^TB^T| = |A^T||B^T| = |A||B| ≠0
所以 A^TB^T 可逆.
(A^TB^T)^-1 = B^T^-1A^T^-1 = B^-1^TA^-1^T = (A^-1B^-1)^T
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式