泰勒公式和麦克劳林公式的关系是什么?
如下:
泰勒公式:f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n (最后一项中n表示n阶导数)。
麦克劳林公式:f(x)=f(0)+f'(0)*x+f''(x)/2!*x^2+...+f(n)(0)/n!*x^n (最后一项中n表示n阶导数)。
麦克劳林公式(Maclaurin's series)是泰勒公式的一种特殊形式。泰勒公式的意义是把复杂的函数简单化,也即是化成多项式函数,泰勒公式是在任何点的展开形式。麦克劳林公式的意义是在0点,对函数进行泰勒展开。
麦克劳林简介
麦克劳林,Maclaurin(1698-1746),是18世纪英国最具有影响的数学家之一。
他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。
他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。