三角形ABC中 求sinA+sinB+sinC的最大值

 我来答
机器1718
2022-06-27 · TA获得超过6839个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部
A=B=C=6时0最大,为3/2根号3
证明:
sinA+sinB+sinc
=2sin[(A+B)/2]cos[(A-B)/2]+sinC
>=2sin[(A+B)/2]+sinC
=2sin(90-C/2)+sinC
=2cos(C/2)+sinC
>=3sin60
=3/2根号3
当且仅当A=B=C=60取等号
这里用到和差化积公式.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式