若A是正定矩阵,C是可逆矩阵,证明:C(转置)*A*C是正定矩阵

 我来答
一袭可爱风1718
2022-05-24 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6654
采纳率:99%
帮助的人:38万
展开全部
证明:
任意非0向量V,因为C可逆,所以,存在X,使得:C*V=X
(因为:X是下面方程的C^(-1)*X=V
C^(-1)满RANK,所以总是可解出X)
则:V(转)*C(转)*A*C*V=X(转)*A*X>0
所以C(转)*A*C正定.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式