已知m、n均为正整数,且mn│m∧2+n∧2+m.证明m是一个完全平方数

 我来答
户如乐9318
2022-09-15 · TA获得超过6627个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:136万
展开全部
mn│(m^2+n^2+m), 即m|n^2
n|(m^2+m)--> n|m(m+1), 因为m, m+1互质,所以需有:m=kn 或m+1=kn
当m+1=kn时,m=kn-1, 因为kn-1, n 互质,所以不可能m|n^2, 所以m+1不能为kn.
当m=kn时,由m|n^2得:k|n, 即n=kr, 因此m=k^2r
mn=k^3r^2
m^2+n^2+m=k^2r(k^2r+r+1)
所以由mn|(m^2+n^2+1),得:kr|(k^2r+r+1), 因此r|1, 所以r=1.
故有:m=k^2为完全平方数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式