四个连续自然数的积等于3024,求这四个连续自然数的和?

 我来答
机器1718
2022-07-23 · TA获得超过6838个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部
设4连续自然数为a、a+1、a+2、a+3
a(a+1)(a+2)(a+3)=3024
即(a^2+3a)(a^2+3a+2)=3024
令t=a^2+3a ①
则t(t+2)=3024
解之得t=54或t=-56(舍)
把t=54代入①
解得a=6或a=-9(舍)
即得所求连续4自然数为6、7、8、9
和是6+7+8+9=30
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式