求e^(t^2-t)dt的不定积分
展开全部
由于e^t^2的积分不能由初等函数表示,则将其改成级数,得:
e^(t^2-t)=∑[(-1)^n/n!+((-1)^n+1)/(n/2)!]x^n,
积分得:∑[(-1)^n/n!+((-1)^n+1)/(n/2)!](1/(n+1))x^(n+1)+C (n从0到+∞)·····
e^(t^2-t)=∑[(-1)^n/n!+((-1)^n+1)/(n/2)!]x^n,
积分得:∑[(-1)^n/n!+((-1)^n+1)/(n/2)!](1/(n+1))x^(n+1)+C (n从0到+∞)·····
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询