已知A是m*n的实矩阵,证明r(ATA)=r(A) AT是矩阵A的转置?
1个回答
展开全部
构造两个齐次线性方程组:
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩简辩阵有相同闹咐坦的秩,R(A)=R(AT A)=n-基础解系中向量个数.
这个很好理解对吧,《线性代数》的基本内容.
现在来证明它液桐们同
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解.
于是R(A)=R(AT A),9,
(1)Ax=0, (2)(AT A)x=0
如果这两个方程组同解,则两个方程组的系数矩简辩阵有相同闹咐坦的秩,R(A)=R(AT A)=n-基础解系中向量个数.
这个很好理解对吧,《线性代数》的基本内容.
现在来证明它液桐们同
首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):
(AT A)x1=AT (Ax1)=AT *0=0
其次证明(2)的解也是(1)的
设x1是(2)的解,则AT A x1=0
进一步有:x1T AT A x1=0
即(Ax1)T (Ax1)=0
假设Ax1=[a1,a2,...,an]T
则(Ax1)T(Ax1)=0就是a1^2+a2^2+...+an^2=0
那么只有a1=a2=...=an=0
也就是Ax1=0
至此说明了(2)的解也是(1)的解.
于是R(A)=R(AT A),9,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询