三角函数的积分怎么化成区间再现公式呢?
1个回答
展开全部
区间再现公式:dx=d(a+b-t)=-dt。
区间再现公式第一行的式子的区间从a到b变成了b到a的原因:dx=d(a+b-t)=-dt,a,b是常数求导直接为0,负号和前面积分上下限抵消,并且上下限要互换。区间再现公式的精妙之处在于,可以不改变积分区域的情况下对被积函数进行改造。
区间再现公式用法:
区间再现公式一般用于被积函数含有较复杂的三角函数时,区间通常为0到π内。区间再现公式是一种换元方法,实质是对原积分变量x进行换元,即令x+t=a+b(a,b分别为原定积分的上下限),用t来取代x成为新的积分变量。
这么做的好处是,在保留原积分区间不变更的前提下(换元后新旧积分区间仍一模一样),实现了对被积函数的改造,然后就可以利用积分区间的可加性构造出积分循环来进行整体求解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询