证明过程如下:
要证:
arcsinx+arccosx=π/2
arcsinx=π/2-arccosx
两边取正弦
左边=sin(arcsinx)=x
右边=sin(π/2-arccosx)=cos(arccosx)=x (利用了sinx=cos(π/2-x))
左边=右边
即证:arcsinx+arccosx=π/2
实际应用
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
证明过程如下:
要证:
arcsinx+arccosx=π/2
arcsinx=π/2-arccosx
两边取正弦
左边=sin(arcsinx)=x
右边=sin(π/2-arccosx)=cos(arccosx)=x (利用了sinx=cos(π/2-x))
左边=右边
即证:arcsinx+arccosx=π/2
扩展资料:
用参数方程表示的曲线上至少有一点,切线平行于两端点所在的弦,这一点Lagrange也具有,但是Cauchy中值定理除了适用y=f(x)表示的曲线,还适用于参数方程表示的曲线。
当柯西中值定理中的g(x)=x时,柯西中值定理就是拉格朗日中值定理。曲线弧 (方程为)是一条连续的曲线弧,除端点外处处有不垂直于 轴的切线,且两端点的纵坐标相等。
请采纳。