已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性

已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.... 已知函数f(x)=loga(a-ax)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称. 展开
 我来答
罗汉室一条天6588
推荐于2017-10-12 · TA获得超过105个赞
知道答主
回答量:120
采纳率:0%
帮助的人:64.6万
展开全部
解析:(1)a-ax>0
又∵a>1,
∴x<1
故其定义域为(-∞,1),值域为(-∞,1)
(2)设1>x2>x1
∵a>1,∴ax2ax1,于是a-ax2<a-ax1
则loga(a-ax2)<loga(a-ax1
即f(x2)<f(x1
∴f(x)在定义域(-∞,1)上是减函数
(3)证明:令y=loga(a-ax)(x<1),则a-ax=ay,x=loga(a-ay
∴f-1(x)=loga(a-ax)(x<1)
故f(x)的反函数是其自身,得函数f(x)=loga(a-ax)(x<1=图象关于y=x对称.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式